AB "AXIS INDUSTRIES"

ULTRASONIC METER FOR HEATING AND COOLING SKU-03

BASIC TECHNICAL DESCRIPTION

KAUNAS

Contents

	Ρ.
SAFETY INFORMATION	3
1.APPLICATION FIELD.	3
2. TECHNICAL DATA	5
3.OPERATION PRINCIPLE.	8
4. MARKING AND SEALING	9
5.INSTALLATION	10
6.OPERATION	14
7.VERIFICATION	25
8.TRANSPORTATION AND STORAGE	25
9.WARRANTY	25
Annex A.Wiring diagram	26
Annex B. Sizes and dimensions	28
Annex C Sealing diagrams and muonting recomendations	31

EC DECLARACION OF CONFORMITY

AB "Axis Industries" herewith declares, that this product complies with the relevant requirements of the following directives:

- 2004/22/EC Measuring instruments Directive
- 2004/108/EC EMC Directive
- 2006/95/EC Low voltage Directive
 - EC-type examination certificate LT-1621-MI004-005

For EU Customers only - WEEE Marking.

Marking of electrical and electronic equipment in accordance with Article 11 (2) of Directive 2002/96/EC

This symbol on the product indicates that it will not be treated as household waste. It must be handed over to the applicable take-back scheme for the recycling of electrical and electronic equipment. For more detailed information about the recycling of this product, please contact your local municipal office.

SAFETY INFORMATION

Before beginning installation works you must to read this document and follow its instructions.

- The meter is powered from the battery (3.6 V), risk factors during the meter • installation and service is a heat conveying fluid flowing within flow sensor with inner pressure up to 1,6 MPa and temperature up to 180° C.
- Only qualified technical personnel may install and maintain heat meters. • Personnel must be familiar with appropriate technical documentation and general safety instructions. It is necessary to follow general safety requirements during installation and maintenance process.
- Device comply with safety class II. Protective grounding is not required, because • housing is made from plastics, and conductive parts are not exposed to the surface.
- Safety guarantees at installation and service of meter is:
 - Reliable insulation of electrical circuits,
 - Hermetic fitting of primary flow and temperature sensors into the pipeline,
 - Reliable fastening of a sub-assemblies of heat meter at installation.
- Safety requirements for temperature sensors are provided in appropriate technical documentation.

Warning! Mounting of the sub-assemblies of heat meter is permissible only after ensuring of absence of heat conveying fluid in the pipeline.

1. APPLICATION FIELD

The ultrasonic meter for heating and cooling SKU-03 is designed for measuring heating and cooling energy and the recording of data in two separate registers.

It is intended for commercial accounting of energy consumption in objects of local or district heating systems: in dwelling houses, office buildings or energy plants and the like.

The microprocessor compact heat and cooling energy meter, can be mounted in both flow or return pipe.

The meter is available with the inseparable pair of temperature sensors installed at factory or the user can apply pair of temperature sensors which corresponds to requirements of Directive 2004/22/EC of 31 March 2004 on measuring instruments and has the type examination certificate

Heat meter corresponds to essential requirements of the Technical Regulation for Measuring Instruments, dated 30 March 2006 (transposing in the NB's country law Directive 2004/22/EC of 31 March 2004 on measuring instruments):

Essential requirements - Annex I

- Annex MI-004 Heat meter.

SKU-03 complies with the European standard EN 1434 "Heat meters" parts 1+6.

SKU-03 fulfils "C" class environment protection requirements according to EN1434-

1:2007

Climatic ambient temperature range: from 5 $^{\circ}$ to 55 $^{\circ}$ C, Mechanical environment class: M1,

Electromagnetic environment class: E2.

Type number combination of the heat meter SKU-03:

		Meter SKU-0.	3 – 1-1-1-1-1*-1	
Туре				
The flow sensor instal	lation:	Ce	ode	
In flow pipe			1	
In return pipe			2	
Application type:			Code	
Heat meter			1	
(Only for measureme		ned for heating)		
Heating and cooling n		n heating and cooling)	2	
(for measurement of	energy consumed to	or heating and cooling)		
The ratio of the perma	ent flow rate to the	Temperature difference	Code	
ower limit of the flow-r		measurement range:		
100		(2150) K	1	
250*		(2150) K	2	
100		(3150) K	3	
250*	**	(3150) K	4	
Flow sensor:				
Permanent flow rate,	Mounthing length,	Connection to the pipeli	ine Code	
m ³ /h	mm			
0,6	110	G ³ ⁄ ₄		
1,0	110	G 3⁄4	2	
1,5	110	G 3⁄4	3	
2,5	130	G1	4	
3,5	260	G1 ¼	5	
6,0	260	G1 ¼	6	
10,0	300	G2	7	
10,0	300	DN40	8	
15,0	270	DN50	9	
Communication modu	le:		Code	
None			0	
M-bus module 1				
CL module 2				
Module RF 868 MHz4				
I anoth of torrest t				
Length of temperatu	re sensors connection	n cable, m (not more 5 m),	example 1,5 m	

 $\label{eq:Remark: second product} \begin{array}{c} \underline{Remark:} & * \ - \ marked \ number \ are \ used \ only \ for \ order \ coding \ (It \ is \ not \ used \ for \ meter \ marking). \\ & ** \ - \ only \ for \ meters \ q_p = 1,5 \ m^3/h; \ 2,5 \ m^3/h; \ 6,0 \ m^3/h; \ 10 \ m^3/h; \ 15 \ m^3/h. \end{array}$

2. TECHNICAL DATA

Accuracy class Energy units Maximum value of thermal power 2 by LST EN1434-1:2007. kWh, MWh, GJ, Gcal 2,63 MW

Flow measurement

The ratio of the permanent flow rate to the lower limit of the flow-rate (the user selects during order):

 $q_{\rm p}/q_{\rm i} = 100$,

or $q_p/q_i = 250$ (only for flow sensors with $q_p = 1.5 \text{ m}^3/\text{h}$; 2.5 m³/h; 6.0 m³/h; 15 m³/h)

Flow sensor can be delivered for threaded connection (up to $qp = 10,0 \text{ m}^3/\text{h}$) or flanged. Technical data of the flow sensor are presented in table 1.1

Table 1.1

Limit Permanent flow rate qp	ts of flow rate, Upper flow rate qs,	m ³ /h Lower flow rate qi	Threshold value of flow rate, m ³ /h	Overall length L, mm	Pressure losses at q _p , kPa	Joining to the pipeline (Thread – G, flange– DN)
0,6	1,2	0,006	0,003	110	23	G3/4"
1,0	2,0	0,01	0,005	110	11,3	G3/4"
1,5	3,0	0,015	0,003	110	17,1	G3/4"
1,5	3,0	0,006	0,003	110	17,1	G3/4"
2,5	5,0	0,025	0,005	130	19,8	G1"
2,5	5,0	0,01	0,005	130	19,8	G1"
3,5	7,0	0,035	0,017	260	4	G1 1/4"
6,0	12,0	0,06	0,012	260	10	G1 1/4"
6,0	12,0	0,024	0,012	260	10	G1 1/4"
10,0	20,0	0,04	0,02	300	18	G2"or DN40
10,0	20,0	0,100	0,02	300	18	G2"or DN40
15,0	30,0	0,150	0,03	300	12	DN50
15,0	30,0	0,06	0,03	300	12	DN50

Temperature limits of heat conveying liquid:

-	for flow sensors $qp \le 2.5 \text{ m}^3/\text{h}$	5 °C130 °C.
-	for flow sensors $qp \ge 3.5 \text{ m}^3/\text{h}$	10°C130 °C.

Note: For heat conveying liquid temperature below 90 °C, the calculator can remain on the flow sensor or be mounted on the wall.

For heat conveying liquid temperature above 90 $^{\circ}$ C the calculator must be mounted on the wall.

16 bar.

Connection cable length between the calculator and the flow sensor 1,2 m

Maximum admissible working pressure

Behaviour of the meter, when the flow rate exceeds the maximum value q_s:

- At the flow rate $q < 1, 2 \cdot q_s$ -linear,

- At the flow rate $q > 1,2 \cdot q_s$ - constant ($q = 1,2 \cdot qs$ is applied to calculations of thermal energy). The error "Maximum allowable value of flow rate is exceeded" is registered and duration of error is calculated.

Pulse inputs (additional)

Pulse inputs (additional)	
Number of pulse inputs	2
Measurement units	m ³
Pulse value	programmable
Type of pulses	IB by LST EN1434-2
Maximum permissible frequency of input pulses	3 Hz
Maximum permissible voltage of input pulses	3,6 V
Condition of maintenance of high level	3,6V via 3,3M Ω resistor
Temperature measurement	
Temperature measuring range(for calculator)	0 °C180 °C.
Temperature difference measuring range	2K150 K. (or 3150 °C)
Temperature sensor :	
- Platinum resistance temperature sensors	Pt500
(corresponding EN60751 and are selected	(or Pt1000–according to the special order)
as matched pairs under requirements EN1434	
and MI004 of Directive 2004/22/EC)	
- For meters with threaded	Direct mounted short probes type DS
connection G3/4, G1 or G1 ¹ / ₄	in accordance with LST EN1434-2
- For other types of connection	Pocket mounted long probes type PL
	in accordance with LST EN1434-2
2-wire connection method, cable length:	
- for temperature sensors type DS	1,5m –standard version
	2,5;5m – according to the special order
- for temperature sensors type PL	2,5m - standard version
	5m – according to the special order

Display (LCD)

The device is equipped with 8-digits LCD (Liquid Crystal Display) with special symbols to display parameters, measurement units and operation modes

The following information can be displayed: integral and instantaneous measured parameters, and archive data, and device configuration information listed in p.7.3.

Display resolution, depending on permanent flow rate value is provided in the Table 1.2

Table 1.2				
Permanent flow rate value q _p	Display resolution of volume , m ³	Display resolution of energy, kWh (MWh)	Display resolution of energy, Gcal	Display resolution of energy, GJ
$< 6 m^{3}/h$	00000,001	0000000,1 kWh	00000,001 Gcal	00000,001 GJ
$\geq 6 \text{ m}^3/\text{h}$	00000,001	00000,001 MWh	00000,001 Gcal	00000,001 GJ

Data registration and storage

Every hour, day and month values of the measured parametres are stored in memory of the meter All data from archive can be read only by means of the remote reading (see p.7.5) In addition data logger records of monthly parameters can be seen on the display (see p. 7.3.1) Following daily, weekly and monthly parameter values are recorded in heat meter memory:

1	Integrated energy
2	Integrated cooling energy
3	Integrated energy of tariff 1
4	Integrated energy of tariff 2
5	Integrated volume of liquid
6	Integrated pulse value in pulse input 1

7	Integrated pulse value in pulse input 2
8	Maximum thermal power value for heating and date
9	Maximum thermal power value for cooling and date
10	Maximum flow rate value and date
11	Maximum value of flow temperature of heat conveying liquid and date
12	Maximum value of return temperature of heat conveying liquid and date
13	Minimum value of flow temperature of heat conveying liquid and date
14	Minimum value of return temperature of heat conveying liquid and date
15	Minimum value of temperature difference and date
16	Average value of flow temperature of heat conveying liquid
17	Average value of return temperature of heat conveying liquid
18	Operating time without an error of thermal energy calculation
19	Total error code
20	Time when the flow rate exceeded 1.2 qs
21	Time when the flow rate was less than qi

Data logger capacity:

up to 960 h - for hourly records.

up to 1116 days -. for daily records,

up to 36 last months -. for monthly records,

Archive data storage time not less than 36 months

Storage time of measured integrated parameters

even if device is disconnected from power supply not less than 15 years

External communication modules and interfaces

Optical interface

Integrated into the front panel of calculator. It is designed for data reading via M-bus protocol and parameterization of the meter.

The optical interface starts work (is activated) only after pressing control button and automatically shuts down after 5 minutes, after the last pressing any button or after completing data transmission via interface.

Optional plug in modules

M-Bus module CL-module (Current loop) RF-module 868 MHz

It is designed for data reading via M-bus protocol and parameterization of the meter. The total working time of serial communication interface (for protection of the battery against premature discharge), is limited up to 130 minutes per month. Unused limit of communications are summarized. The interface is blocked after the expiration of a limit and only after change of the hour, the new time limit of communications will be given (for 11 seconds for each next hour).

Pulse outputs

2 (OB-normal mode, OD-test mode) Type: open collector, permissible current up to 20mA, voltage up to 50V. Pulse duration: 100 ms – in the normal operating mode, 1.6 ms – in the test mode Pulse values (energy and volume) on pulse output device in the operating mode as specified in the table below :

- energy pulse output values:

Energy units	,,kWh", ,,MWh"	,,GJ"	"Gcal"	
Pulse value of thermal energy	1 kWh/pulse	0,005 GJ/pulse	0,001	
			Gcal/pulse	
- flow (volume) pulse output values:				
- flow (volume) pulse output values:				
- flow (volume) pulse output values: Permanent flow rate, q_{p} , m ³ /h	0,6 2,5	3,5; 6	10; 15	

Supply voltage:

Internal baterry

size AA, 3,6 V, 2,4 Ah, lithium baterry(Li-SOCl₂) service life not less than 11 years

Mechanical data :

Dimensions of calculator Dimensions of flow sensors Weight: 117 mm x 44 mm x 89,5 mm, According to Annex B

weight.	
Connection type of flow sensor	Weight of meter, not more than, kg
G3/4"	0,7
G1"	0,7
G1 ¼"	3,2
G2"	3,7
DN40	6,8
DN50	8,5

Envoronmental class Ambient temperature:	Meets EN1434 class C
Calculator	at +5 $^{\circ}$ C to +55 $^{\circ}$ C
	(non-condensing, indoor installation)
Flow sensors	at -30 $^{\circ}$ C to 55 $^{\circ}$ C
Relative humidity	< 93 %
Mechanical environment class:	M1
Electromagnetic environment class:	E2
Protection class of calculator enclosure	IP65
Protection class of flow sensor enclosure	IP65 (IP67 – by special ordering)

3. OPERATING PRINCIPLE

The flow measuring principle is based on ultrasonic measurement method. The ultrasonic signal along the measuring section moves many times before, and the flow downstream between the ultrasonic sensors have to perform transmitter and receiver functions. From the resulting time difference the flow rate is calculated.

The liquid temperature is measured with standard platinum resistance temperature sensors Pt500 or Pt1000. Pairs of temperature sensors with 2-wire connection method for measurement temperatures on flow and return pipelines are used. Flow and return temperature sensors can be replaced only in pairs.

Energy calculation formulas:

- Flow sensor in flow pipe

$$Q = V1 * \cdot \rho_1 * (h_{T1} - h_{T2})$$

- Flow sensor in return pipe

 $Q = V1 * \rho_2 * (h_{T1}-h_{T2})$

There: Q –thermal energy,

V1 –Water volume, m^3

 $\rho_1 \rho_2$ - Water densities, according to supplied and return water temperatures Θ_1, Θ_2 h_{T1}h_{T2} - The enthalpies, according to water temperatures Θ_1, Θ_2

When function of cooling energy is made active and at negative temperature difference, the energy for cooling will be registered and in the additional tariff register:

 $\sum \mathbf{Q} = \mathbf{Q} \mathbf{1} + \mathbf{Q} \mathbf{2}$

- Flow sensor in flow pipe:

When $\Theta_1 > \Theta_2$: Q1=V1· ρ_1 ·(h_{T1}-h_{T2}), Q2=0

When $\Theta_1 < \Theta_2: Q_2 = V_1 \cdot \rho_1 \cdot (h_{T_2} - h_{T_1}), Q_1 = 0$

- Flow sensor in return pipe:

When $\Theta 1 > \Theta 2$: Q1=V1• ρ_2 •(h_{T1}-h_{T2}), Q2=0

When $\Theta_1 < \Theta_2: Q_2 = V_1 \cdot \rho_2 \cdot (h_{T_2} - h_{T_1}), Q_1 = 0$

Heat meter calculator provides all the necessary measurements and data storage functions.

4. MARKING AND SEALING

4.1.Marking

Calculator

There are following information on the front panel of calculator - manufacturer's trade mark, type of meter, serial number, year of manufacture, EC-type examination certificate number, limits of the temperature, limits of the temperature diferences, accuracy class, environmental class by LST EN1434-1, el;ectromagnetic and mechanical environmental class, enclosure protection class, type of temperature sensors, flow sensor installation site (flow or return pipe), the limiting values of the flow rate(qi,qp,qs), maximum temperature range for flow sensor , the maximum admissible working pressure, nominal pressure, voltage level for power supply.

Numbers of terminal pins are marked close to the terminal

Flow sensor

There are following information on the flow sensor: -nominal diameter,

- arrow for indication of a flow direction

4.2.Security seals

Manufacturer seals:

- One warranty seal on the one screw of protective cover of electronic unit inside the calculator (see Annex C, Fig.C1).
- Seals on the screws of protective cover of flow sensor (Sticker or hanging seal according see Annex C, Fig.C2).

Calibration (verification) seal:

- One seal on the one screw of protective cover of electronic unit inside the calculator (see Annex C, Fig.C1).

- Seals on the screws of protective cover of flow sensor (Sticker or hanging seal according Annex C, Fig.C2).

Mounting seal:

- Hanging seal on the junction between upper and lower part of the housing of the calculator (see AnnexC, Fig.C1)
- Seals on the protective cover and mounting bolt of temperature sensors (see Annex C, Fig.1...2).

The meter must be sealed to ensure that after the installation, it is not possibility of dismantle, remove or altering the meter without evident damage on the meter or the seal.

5. INSTALLATION

5.1. Basic requirements

Heat meter is designed for installation in heating or combined heating and cooling systems. Before installing the device:

- check if all parts listed in the documentation are available,

- check if there are no visible mechanical defects,

- check if there are valid labels of manufacturer and certification authority.

Only qualified personnel may install the equipment, following the requirements listed in this

document, in technical documentation of other system components and in heat meter installation project

It is forbidden to wire signal cables nearby (less than 5 cm) with power cables or cables of other devices.

It is forbidden to change length of a cable.

5.2. Electrical wiring

5.2.1. Temperature sensor connection:

Factory installed sensors

With factory-installed sensors do not split, shorten or extend the cables. If the screw terminals are accessible on the calculator, to facilities installation cables can be temporarily disconnected from the terminals and reconnected afterwards.

Customer sensors

Only approved and matching pairs of temperature sensors with two wire connection method are to be used.

Connection of the customer temperature sensors:

Before installation check that the temperature sensors are paired with each other (T1 to T2)

By means of tweezers remove a protective knolls from sealant holes 1 and 2 at left side of calculator

Run the wire of flow temperature sensor T1 through the hole 1 and the wire of return temperature sensor T2 through the hole 2.

Use two wire connection method for temperature sensors connection -T1 connect to the terminals 5/6, T2 - connect to the terminals 7/8 as shown in Annex B, Figure B1.

5.2.2. Installation of additional communication modules

In the bottom, right-hand corner of the calculator, communication module can be installed and must by connected. Connector of the communication module are set in a calculator connector. The module is fastening with two screws

Connection of the communication module (except the module RF):

By means of tweezers remove a protective knoll from not used sealant hole of calculator

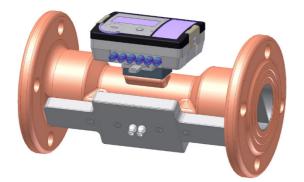
Run the wire through the hole and fix as shown in chapter 5.3.1.

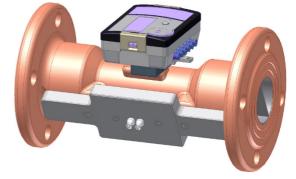
Connect a wire to the module under the scheme specified on the module.

5.3 Mounting

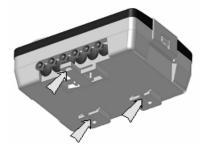
5.3.1. Mounting of calculator

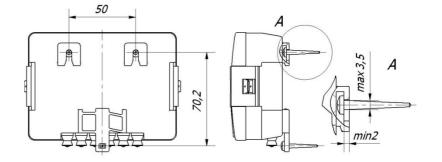
Heat meter calculator may be installed in heated premises, working ambient temperature shall be not more than 55 $^{\circ}$ C. It may not be exposed to direct sunlight.

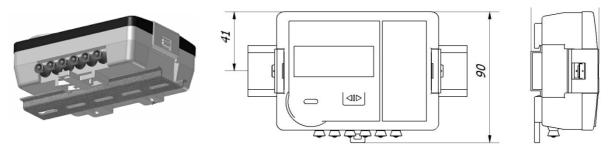

Calculator can be mounted in several different ways:


- Wall mounting, without possibility sealing of mounting
- Wall mounting, with possibility sealing of mounting
- Mounting on standard DIN-rail
- Panel mounting

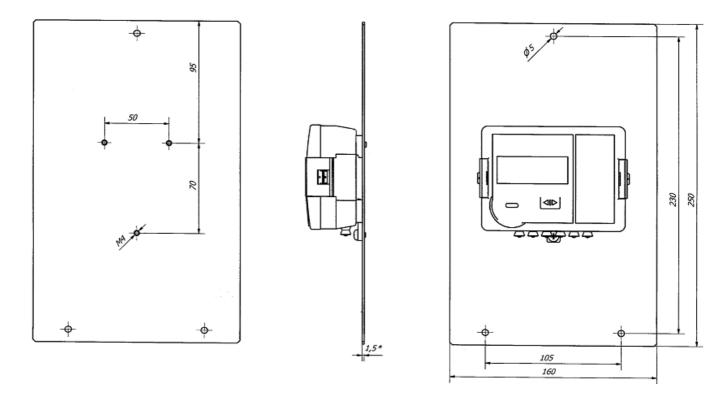
- Direct mounting on ultrasonic flow sensor housing, turning every 90° (only when the temperature of the flow does not exceed $90 \circ C$):




a) On the flow sensor with a thread connection



- b) On the flow sensor with flange connection
- On the wall:



- Panel mounting on standard DIN-rail.

- Adapter plate according to figure 8 of EN1434-2:2007 for wall mounting of calculator can be used (if the aperture in the wall is too large for the calculator) :

Important: It is forbidden to attach the calculator directly to a wall if there is a risk that on walls can be condensed humidity or temperature of a surface of a wall can fall lower than 5°. In this case, it is recommended to attach the calculator so that between it and wall surfaces there was an air gap not less than 5 cm.

5.3.2. Mounting of flow sensors

Sizes and mounting dimensions of flow sensors are provided in Annex B. Requirements for flow sensor installation in pipeline:

- For flow sensors DN15...DN32: no requirements for straight pipeline length in upstream and down stream directions.

- For flow sensors DN40...DN50:

- upstream straight pipeline length must be not less 5DN and downstream straight pipeline length must be not less 3DN

Avoid the flow sensor installation near after the pumps which can cause cavitations.

Flow sensor can be mounted both vertically and horizontally in pipelines. Vertically mounting of the flowmeter is allowed only if flow direction in the pipeline is from down to up.

The direction of the sensor installation (is indicated with the arrow on the label of flow sensor) must mach with the flow direction in pipeline.

The flange gaskets must mach with the pipe diameter. During the installation gasket must be exactly centered with the center of the pipe cross-section to avoid sticking out gaskets inside the pipe.

5.3.3. Mounting of temperature sensors

Temperature sensors are mounted by head upwards, is perpendicular to the pipe axis or inclined by 45 $^{\circ}$ angle on fluid flow direction so that the sensing element has been inserted in medium at least up to the pipe axis or beyond (as shown in Annex C).

For meters with flow sensor joining G3 / 4 ', G1, and G1 $\frac{1}{4}$ – one temperature sensor is mounted in the flow sensor housing.

5.4. Setting up the jumpers (J)

The connector J is on the calculator plate between the temperature sensors and pulse input / output connection terminals (Figure A1). Joining or leaving open the connector contacts, you can choose the normal or verification (test) mode, activate the pulse inputs or outputs:

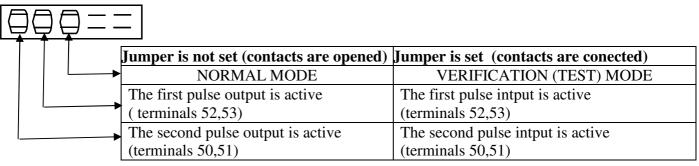


Fig. 6.1. Definition of jumpers

5.5. Verification of installation and set-up

After installing the heat meter, let measured fluid flow through the flow sensor. Measured parameter values should be indicated on the display, if the heat meter (calculating unit, flow and temperature sensors) is installed correctly. If measured parameter values are not displayed correctly, it is necessary to verify the installation.

5.6. Sealing after installation

The meter must be sealed according to p.4.2 to ensure that after the installation, it is not possibility of dismantle, remove or altering the meter without evident damage on the meter or the seal.

Mounting seal:

- Hanging seal on the junction between upper and lower part of the housing of the calculator (see Annex C, Fig.C1)
- Seals on the protective cover and mounting bolt of temperature sensors (see Annex C, Fig.C3).
- Connection of flow sensor with the pipeline should be sealed in addition.

6. OPERATION

The information can be displayed using control button are on the top of the calculator

Control button

6.2. Display function

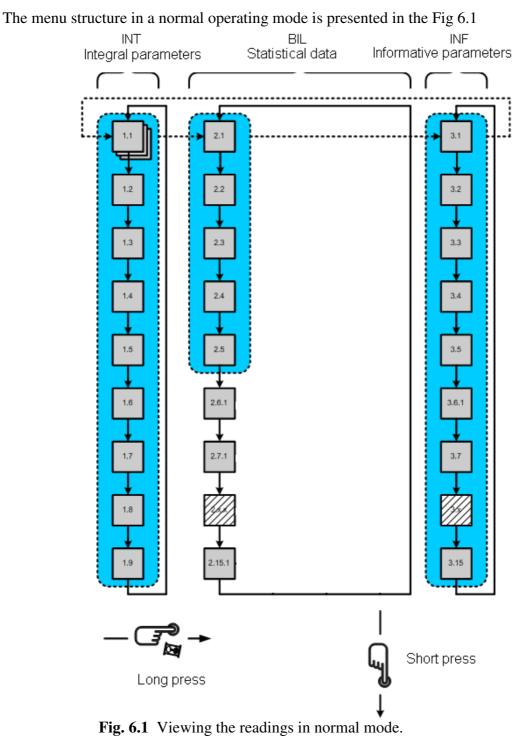
The calculator of heat meter is equipped with 8-digits LCD (Liquid Crystal Display) with special symbols to display parameters, measurement units and operation modes.

Destination of the special symbols:

→ -	the flow is flowing forward (right direction)
	the flow is flowing backwards

arrow is not displayed - the flow does not flow

Destination of the other symbols are described in sections 6.3.1...6.3.3


The following information can be displayed:

- integral and instantaneous measured parameters,
- archive data and set day data,
- device configuration information,

The display constantly shows the total thermal energy.

6.3. Menu structure

6.3.1. Viewing the readings in normal mode (Users meniu)

Integral parameters values (1.2) or- if at least one error has been detected – error code (1.1) are displayed if the button has not been presed for more than 60 seconds. (INT - integral parameters, BIL – statistical data, INF- informative parameters

 $- \operatorname{CF}_{kg} \rightarrow -\log \operatorname{press}(>3 \text{ s}) - \operatorname{shift} \text{ to the right}$ | $- \operatorname{short} \operatorname{press}(<3 \text{ s}) - \operatorname{shift} \operatorname{down})$

6.3.1. Viewing the readings in normal mode (Users meniu)

ID	Parameter	Value	Description
1.1	Error code with data stamp of starting oferror <u>Are shown only at an error in meter</u> <u>work</u>	INT BIL INF	All three displays, will be displayed in turns in one second interval Calculator errors Temperature 2 errors Temperature 1 errors Flow errors Er: DOIII INT BIL INF Description of Error codes is presented in p. 6.3.3
1.2	Energy for heating		presented in p. 0.5.5
1.3	Energy for cooling		Are shows only in the heating and cooling energy meters
1.4	Integrated energy of tariff 1	00749070 MWh	"Snowflake" indicates that the tariff is linked to the meter of cooling energy
1.5	Integrated energy of tariff 2	INT BIL INF	"Snowflake" indicates that the tariff is linked to the meter of cooling energy
1.6	Integrated quantity of heat- conveying liquid	00 149 1 10 "" INT BIL INF	
1.7	Integrated reading of pulse input 1	00499<u>3</u>10 INT BIL INF	The additional flow sensor can be connected to a pulse input 1
1.8	Integrated reading of pulse input 2	CO900000	The additional flow sensor can be connected to a pulse input 2
1.9	Segment test	H2 3 ← HOMTESTSET HAX MIN ♥ INT BIL INF INT BIL INF	changes each 1 second
1.10	Working hours without a energy calculation error	INT BIL INF	
1.11	Customer number	INT BIL INF	Corresponds to a wire transmission via MBus protocol
1.12	Control number	INT BIL INF	

Remark: Here the full list of shown parametres is represented. For the specific meter it can be reduced

2.1	Quantity of thermal energy on set day with date stamp	00078 <u>813</u> m wh INT BIL INF 20060 10 1 INT BIL INF	Changing with date stamp every 1 second
2.2	Quantity of thermal energy for cooling on set day with date stamp	00090 <u>403</u> www. INT BIL INF 20060 10 1 INT BIL INF	When meter is intended for heating and cooling, the two separate displays are shown. Changing with date stamp every 1 second
2.3	Tariff register 1 on set day with date stamp	1 00000 INT BIL INF 1 20060 10 1 INT BIL INF	Changing with date stamp every 1 second
2.4	Tariff register 2 on set day with date stamp	2 00000 INT BIL INF 2 0060 10 1 INT BIL INF	Changing with date stamp every 1 second
2.5	Volume of liquid on set day with date stamp	000088 <u>093</u> INT BIL INF 20060 10 1 INT BIL INF	Changing with date stamp every 1 second
2.6	1 st pulse input pulse value on set day with date stamp	000088 <u>093</u> INT BIL INF 20060 10 1 INT BIL INF	Changing with date stamp every 1 second
2.7	2 nd pulse input pulse value on set day with date stamp	00000000000000000000000000000000000000	Changing with date stamp every 1 second
2.8	Quantity of thermal energy on set day of previous month with date stamp	INT BIL INF	The user chooses set day in the month according to needs. (If it is set up 31, the data will be recorded in the last day of the month) Registration Time: 23:59:59
2.9	Quantity of thermal energy for cooling on set day of previous month with date stamp	00078913 www INT BIL INF 20060131 INT BIL INF	Changing with date stamp every 1 second

2.10	Tariff register 1 on set day of previous month with date stamp	100078913 wwh INT BIL INF 20060131	Changing with date stamp every 1 second
2.11	Tariff register 2 on set day of previous month with date stamp	2 M M Wh INT BIL INF 20060 13 I INT BIL INF	Changing with date stamp every 1 second
2.12	Volume of liquid on set day of previous month with date stamp	INT BIL INF	Changing with date stamp every 1 second
2.13	1 st pulse input pulse value on set day of previous month with date stamp	F COORD F F COORD F BIL N F COORD F N F SOO60 F S N F S S S S S S S S S S S S S S S S	Changing with date stamp every 1 second
2.14	2 nd pulse input pulse value on set day of previous month with date stamp	² M m ^m 000088 <u>993</u> INT BIL INF 20060 13 1 INT BIL INF	Changing with date stamp every 1 second
2.15	Maximum Power of previous month with date stamp	INT BIL INF	Changing with date stamp every 1 second
2.16	Minimum Power (or maximum Power for cooling) of previous month with date stamp	INT BIL INF	Changing with date stamp every 1 second
2.17	Maximum flow rate of previous month with date stamp	INT BIL INF	Changing with date stamp every 1 second
2.18	Maximum temperature in flow pipe of previous month with date stamp	INT BIL INF	Changing with date stamp every 1 second

2.19	Maximum temperature in return pipe of previous month with date stamp	INT BIL INF	Changing with date stamp every 1 second
2.20	Maximum temperature difference of previous month with date stamp	INT BIL INF	Changing with date stamp every 1 second
2.21	Minimum temperature in flow pipe of previous month with date stamp	INT BIL INF	Changing with date stamp every 1 second
2.22	Minimum temperature in return pipe of previous month with date stamp	INT BIL INF	Changing with date stamp every 1 second
2.23	Minimum temperature difference of previous month with date stamp	INT BIL INF	Changing with date stamp every 1 second
3.1	Thermal power	HARD BIL INF	
3.2	Flow rate		
3.3	Temperature in flow pipe		
3.4	Temperature in return pipe	2 25 °C	
3.5	Temperatute difference		
3.6*	Next replacement date of the battery	F 20 1403	
3.7*	Real time calendar	20070 10 1	
3.8*	Real time clock	21-45-59	

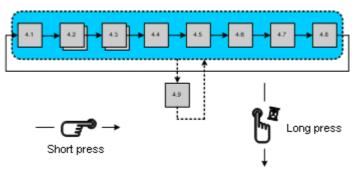
3.9*	Yearly set day	1-2 3 ↔ HONTESTSET nTh Color Manh	
3.10*	Monthly set day		
3.11*	Tariff 1	Tariff 1, when T1-T2 < 10.0 oC T1-T2 < 10.0 oC T1-T2 < 10.0 oC T1-T2 < 10.0 oC T1-T2 = 100°C TNT BIL INF Or >10.0 oC T1-T2 = 100°C TNT BIL INF Or in interval from 10.0 to 40.0oC (changes each 1 s.) T2 = 100°C INT BIL INF T2 = 100°C INT BIL INF Or there is the time interval in hours (00-24h.)	It is possible to choose: One of the measured parameters, 1 st or 2 nd pulse input (if it is configured as an input), one of the temperature or the temperature difference.
		L 1 07-23 INT BIL INF Or tariff is activated directly by pulse input: L 1 07-23 INF BIL INF	
3.12*	Tariff 2	Similarly ID 3.11, only ,,L1",changes in the ,,L2"	See 3.11
3.13*	1 st pulse input/output configuration	Input: INT BIL INF Input (tariff activation): INT BIL INF Outputs: energy, quantity of liquid	Inputs: Can be configured only for a quantity of water. Maximum pulse resolution is displayed 0.00001 m3. Outputs: Can be configured for a quantity of water (m3), for heating (In a shown case) / cooling(additional snowflake is displayed) energy or to one of tariffs.

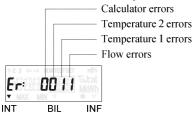
		INT BIL INF Tariff INT BIL INF INT BIL INF INT BIL INF Tariff condition: INT BIL INF Tariff condition: INT BIL INF	
3.14*	2 nd pulse input/output configuration	Similarly ID 3.13, only "1",changes in the "2"	See 3.13
3.15	Type of heat-conveying liquid		Type of heat-conveying liquid: "" (crosses) - water
3.16	Pressure value for energy calculations	ISOEY PR	"160E4"-corresponds to the pressure 1.6 MPa
3.17*	Customer number	ÇO 1354 10 INT BIL INF	Are transferred on telegram Mbus
3.18	Softvare version number		
3.19	Serial number	r 14753 10	
3.20*	MBus adress	INT BIL INF	
3.21	Working hours without a power calculation error	INT BIL INF	
3.22*	Battery operation time	INT BIL INF	

<u>Remark:</u> Values of the parameters marked with "*" and energy measurement units (MWh, Gcal or GJ) can be modified by installing a meter. Replacement is possible via optical interface and in conjunction with the special configuration programme in a test mode, when jumper is set (see p.6.4). In the same way it is possible to switch off indication of irrelevant parameters.

6.3.2. Viewing the readings in TESTmode (Service meniu)

The menu structure in a test mode is presented in the Fig 6.2




Fig.6.2. Viewing the readings in verification (test) mode $-\Box_{lag} \rightarrow -\text{short press}(<3 \text{ s}) - \text{shift to the right}$ | \downarrow $-\log \text{ press}(>3 \text{ s}) - \text{shift down})$

Viewing the readings in verification (test) mode (Service meniu)

ID	Parameter	Value	Description
4.1	High- resolution energy	INT BIL INF	It is updated every second if the test mode is made active
4.2	High-resolution integrated volume	INT BIL INF	It is updated every second if the test mode is made active
4.3	Number of pulses of 1st pulse input		
4.4	Number of pulses of 2nd pulse input	INT BIL INF	
4.5	Temperature of heat conveying liquid in flow pipe		
4.6	Temperature of heat conveying liquid in return pipe	INT BIL INF	
4.7	Temperature difference	INT BIL INF	
4.8	Actuation of flow simulation	INT BIL INF	During test, the value of flow is constantly displayed. After the ending of test, the values of energy and quantity of a liquid are registered in memory till the successive test or before following actuating of the flow simulation
4.9	High-resolution flow rate	INT BIL INF	

6.3.3. Error codes

Error code may consist from up to 4 symbols. Each symbol may have values 0...8

Code	Description
Status of calculator	0 - no error, normal operation
123 Buduğuğu	1 - warning – ending battery life
Er: 0011	2- temperature difference is greater than the permitted limits
INT BIL INF	4- temperature difference is less than the permitted limits
	8- electronics failure
Status of temperature	0- no error, normal operation
sensor 2 (return pipe)	4- short circuit
	8- sensor failure (oper circuit or short circuit)
Status of temperature	0- no error, normal operation
sensor 1 (flow pipe)	4- short circuit
	8- sensor failure (oper circuit or short circuit)
Status of flow sensor	0- no error, normal operation
123 2020212100h	1- no signal, flow sensor is empty
Er: 0011	2- flow flows in an reverse direction
INT BIL INF	4- flow rate greater than $1.2 \cdot qs$ (are displayed q=1,2qs)
	8- electronics failure

Active error codes are added and simultaneously displayed, if it is detected more than one error

- 3 corresponds errors 2 + 1
- 5 corresponds errors 4 + 1
- 7 corresponds errors 4+2+1
- 9 corresponds errors 8 + 1
- A corresponds errors 8 + 2
- B corresponds errors 8 + 2 + 1
- D corresponds errors 8 + 4 + 1
- E corresponds errors 8 + 4 + 2
- F corresponds errors 8 + 4 + 2 + 1

In a case when value at least one digit of error code is ≥ 8 - calculation of thermal energy and summation of volume of water and operation time without errors are stoping

In the case of the flow sensor error "4" - duration of time, "when the flow rate $q > 1.2 \cdot qs$ " is registered in addition.

6.4. Activating test mode

Destination of contacts of connector J

The 2-line,10-pole connector is on the calculator plate between temperature sensors and pulse input /output terminals (see fig.A1, Annex A). Destination of contacts of connector J is presented in fig. 6.3.

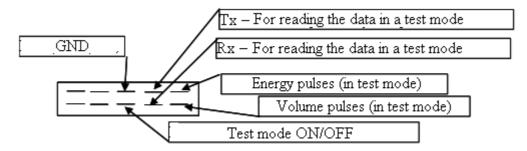


Fig. 6.3. Destination of contacts of connector J

Activation of test (verification) mode

In test mode it is possible to achieve precise results within short measuring time.

For activation of Verification (Test) mode you must opening device and set up jumper on the connector (J) contacts as shown in Figure 6.4.

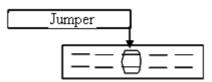


Fig. 6.4. Test mode activation

For working in this mode, the calculator can not be closed.

When the jumper "J" is set, the device enters test mode – label "TEST" appears on the LCD, calculation process is stopped and all integral parameter values are saved in the memory. After return to normal mode, the original values from before the test are displayed again.

The readings of meter in verification (test) mode are presented in p. 6.3.2

LCD resolution in verification mode "TEST" are presented in Table 6.1

Table 6.1

Energy measurement units	,,kWh", ,,MWh"	"GJ"	"Gcal"
Display resolution of energy	000000,01 Wh	0000000,1 kJ	0000000,1 kcal
Display resolution of volume		$00,000001 \text{ m}^3$	

Energy and volume pulse values in verification mode ,,TEST" are presented in Table 6.2

Table 6.2

Nominal		Energy pulse value			
(permanant) flow rate $q_{p,}$ m^3/h	Volume pulse value, l/pulse	"kWh", "MWh"	"GJ"	"Gcal"	
0,6	0,002	0,1 Wh/pulse	0,5 kJ/ pulse	0,1 kcal/ pulse	
1,0	0,002	0,2 Wh/ pulse	1 kJ/ pulse	0,2 kcal/ pulse	
1,5	0,004	0,2 Wh/ pulse	1 kJ/ pulse	0,2 kcal/ pulse	
2,5	0,005	0,5 Wh/ pulse	2 kJ/ pulse	0,5 kcal/ pulse	
3,5	0,02	1 Wh/ pulse	5 kJ/ pulse	1 kcal/ pulse	
6,0	0,02	1 Wh/ pulse	5 kJ/ pulse	1 kcal/ pulse	
10,0	0,05	2 Wh/ pulse	10 kJ/ pulse	2 kcal/ pulse	
15,0	0,05	5 Wh/ pulse	20 kJ/ pulse	5 kcal/ pulse	

Ending of verification mode

Remove jumper J to leave test mode and return to normal mode. After leaving test mode, previously recorded integral parameter values are displayed.

6.5. Remote data reading

For data transmission from meter it can be used optical interface. The optical head is placed on the calculator and is connected to RS-232 interface of reading device.

In addition for remote reading of data can be used two pulse outputs, or one of the following communication modules:

CL-module (Current loop) M-Bus RF-module

Pulse outputs

The pulse outputs are active when the corresponding contacts of connector (J) is open (see Fig. 6.3)

All communication interfaces does not affect the measured parameters and their calculation, and therefore can be replaced by another type without removing of verification seal.

Data collection from meters can be realised via PC, via telephone modem, via GSM modem, via Internet, and so on.

7. VERIFICATION

Metrological control of heat meter parameters is performed according to requirements defined in EN 1434-5.

8. TRANSPORTATION AND STORAGE REQUIREMENTS

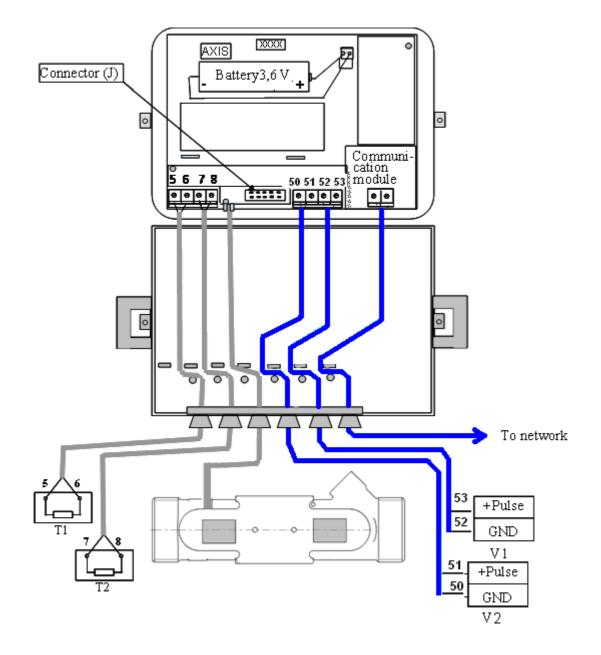
Requirements for safe transportation and storage of temperature and pressure sensors are provided in relevant technical documentation.

Packed equipment may be transported in any type of covered vehicle. Equipment should be anchored reliably to avoid shock and possibility to shift inside vehicle.

Equipment should be protected against mechanical damage and shock.

Equipment should be stored in dry, heated premises, where environment temperature is not lower than +5 °C. No agresive chemical substances should be stored together because of corrosion hazard.

9. WARRANTY


Manufacturer gives the warranty that equipment parameters will meet the technical requirements, listed in the paragraph 2 of this document, if transportation, storage and operation conditions will be followed.

Waranty period - 12 months from bringing into operation, but not more than 18 months from manufacturing date.

Manufacturer's address:


AB "Axis Industries", Kulautuvos g. 45a, Kaunas LT-47190, Lithuania tel. +370 37 360234; fax. +370 37 360358.

Annex A

Fig.A1. Electrical wiring diagrams

T1 –flow temperature sensor, T2 –return temperature sensor, V1-additional pulse input / output 1, V2 –additional pulse input / output 2

Table A1. Numbering of terminals

Carculator.		
Terminal Nr.	Destination	
5	High temperature sensor (T1)	
6	High temperature sensor (T1)	
7	Low temperature sensor (T2)	
8	Low temperature sensor (T2)	
50	2 nd additionl pulse input/output GND	
51	2 nd additionl pulse input/output (In/Out2)	
	(Volume output for TEST mode)	
52	1 st additionl pulse input/output GND	
53	1 st additionl pulse input/output(In/Out1)	
	(Energy output for TEST mode)	
Additional plug	g- in modules:	
Terminal Nr.	Destination	
24	M-bus (Mbus module)	
25	M-bus (Mbus module)	
20	CL+ (CL module)	
21	CL- (CL module)	

Calculator:

Annex B

Fig. B1. Mechanical dimensions of calculator of heat meter SKU-03

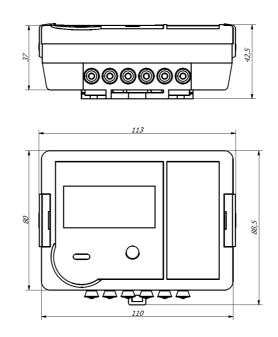
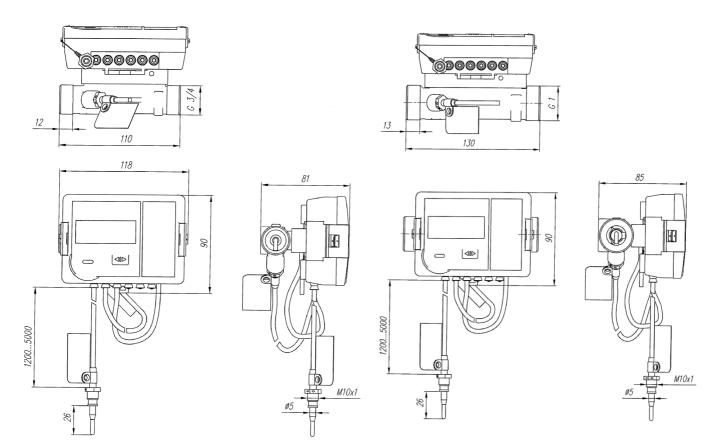
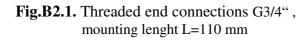




Fig. B2. Sizes and dimensions of heat meter SKU-03

Fig.B2.2. Threaded end connections G1", mounting lenght L=130 mm

Annex B

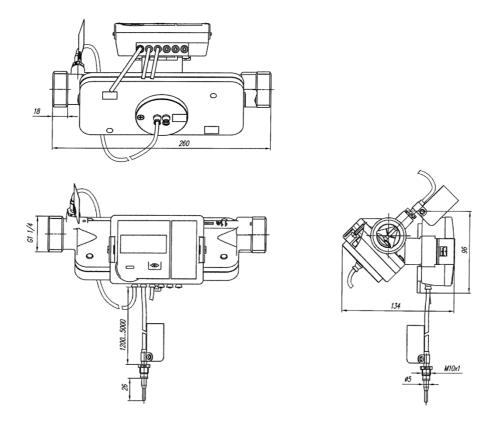


Fig.B2.3. Threaded end connections G1 1/4", mounting lenght L=260 mm

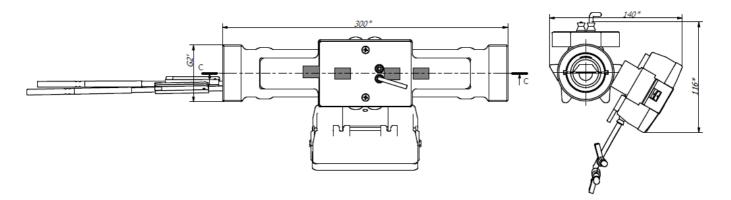


Fig. B2.4. Threaded end connections G2", mounting lenght L=300 mm

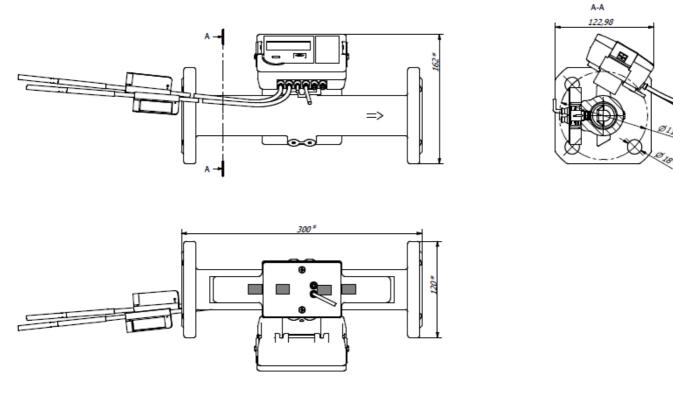


Fig.B2.5. Flanged connection DN40, mounting lenght L =300 mm

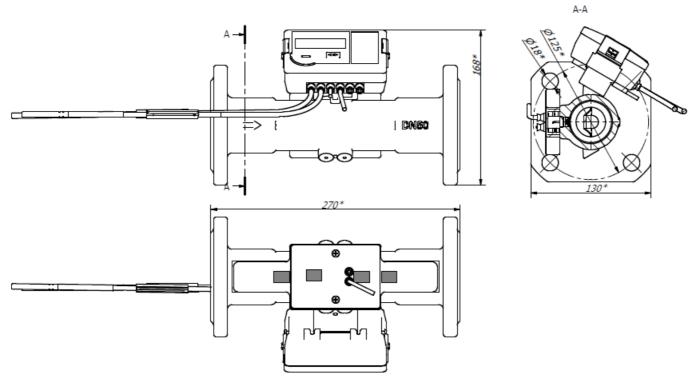
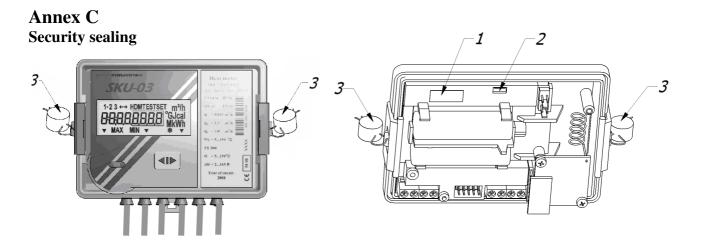
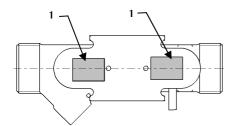
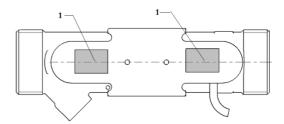
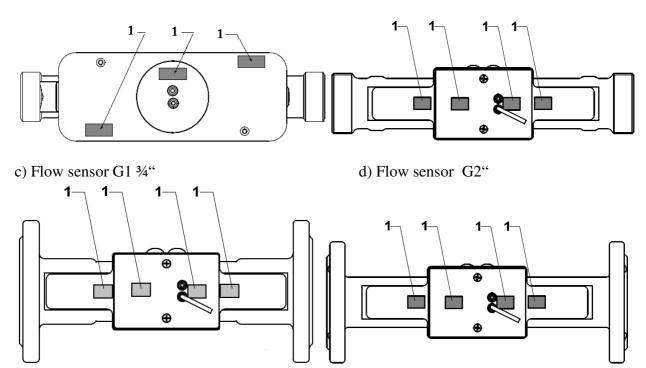
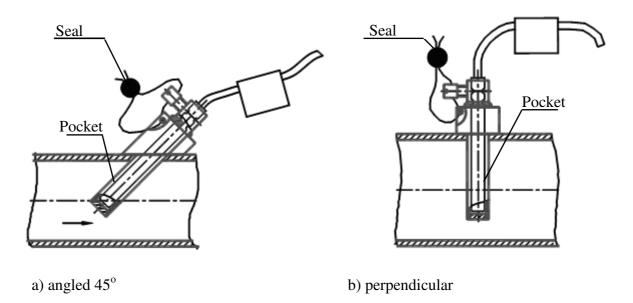





Fig. B2.6. Flanged connection DN50, mounting lenght L= 270 mm


Fig.C1. Calculator sealing Calculator general view: the cover is closed, and the cover is opened (1-verification seal, 2-manufacturer security seal, 3 –mounting seal)

a) Flow sensor $q_p 0,6$; $q_p 2,5$; L=110 mm

b) Flow sensor $q_p 1,5; q_p 2,5, L=130 \text{ mm}$



e) Flow sensor DN50

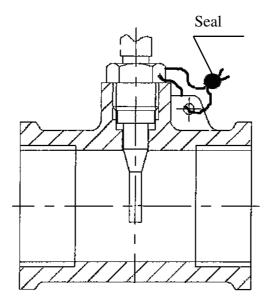

f) Flow sensor DN50

Fig.C2. Flow sensors sealing (1-verification seal)

Annex C Security sealing

a) Installation recomendations for temperature sensors type PL with permanently connected signal leads

b) Installation recomendations for temperature sensors type DS

Fig. C3. Temperature sensors installation and sealing